昇思MindSpore2024年技术帖分享大会圆满结束!全年收获80+高质量技术帖, 2025年全新升级,推出“2025年昇思干货小卖部,你投我就收!”,活动继续每月征集技术帖。本期技术文章由社区开发者breeze输出并投稿。如果您对活动感兴趣,欢迎在昇思论坛投稿。

在人工智能与大数据时代,AI框架与数据库系统的深度集成正在成为新的技术趋势。本文将深入探讨华为两大开源项目——昇思MindSpore AI框架与openGauss数据库的协同工作,展示如何构建更智能的数据驱动应用。

01 技术栈概述

1、MindSpore:全场景AI框架

MindSpore是开源的深度学习框架,具备端边云全场景协同、高效易用等特性,支持自动并行、深度优化等先进特性。

import mindspore as ms
from mindspore import nn, ops
# 简单的MindSpore模型定义
class SimpleNet(nn.Cell):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Dense(784, 512)
        self.fc2 = nn.Dense(512, 256)
        self.fc3 = nn.Dense(256, 10)
        self.relu = nn.ReLU()
  
    def construct(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        return self.fc3(x)

2、openGauss:企业级AI-Native数据库

openGauss不仅是一个高性能的关系数据库,更在AI原生能力上进行了深度探索,提供了内置的AI算法和模型管理能力。

02 深度集成架构

1、数据流架构设计

+----------------+      +-----------------+      +-----------------+
|   MindSpore    | <--> |   OpenGauss     | <--> |   业务应用      |
|   AI框架       |      |   数据库        |      |                 |
+----------------+      +-----------------+      +-----------------+
        ^                        ^                        ^
        |                        |                        |
+----------------+      +-----------------+      +-----------------+
| 模型训练       |      | 特征存储与      |      | 智能决策        |
| 与推理服务     |      | 数据管理        |      | 与业务逻辑      |
+----------------+      +-----------------+      +-----------------+

2、三种集成模式

模式一:数据库内AI(openGauss AI能力)

-- openGauss内置的AI函数使用
-- 1. 数据预处理
CREATE TABLE customer_features AS
SELECT 
    customer_id,
    MADLIB.zscore_normalize(age) as normalized_age,
    MADLIB.zscore_normalize(income) as normalized_income
FROM customer_raw_data;

-- 2. 内置机器学习算法
SELECT MADLIB.linregr_train(
    'customer_features',
    'customer_linear_model',
    'spending_score',
    'ARRAY[1, normalized_age, normalized_income]'
);

-- 3. 模型预测
SELECT customer_id, 
       MADLIB.linregr_predict(
           'ARRAY[1, normalized_age, normalized_income]',
           m.coef
       ) as predicted_spending
FROM customer_features, customer_linear_model m;
模式二:外部AI服务调用
import mindspore as ms
import psycopg2
from mindspore import dataset as ds

class openGaussDataLoader:
    def __init__(self, connection_params):
        self.conn = psycopg2.connect(**connection_params)
    
    def load_training_data(self, query, batch_size=32):
        """从openGauss加载训练数据"""
        cursor = self.conn.cursor()
        cursor.execute(query)
        
        # 转换为MindSpore Dataset
        def data_generator():
            while True:
                rows = cursor.fetchmany(batch_size)
                if not rows:
                    break
                features = [row[:-1] for row in rows]
                labels = [row[-1] for row in rows]
                yield (np.array(features, dtype=np.float32), 
                       np.array(labels, dtype=np.float32))
        
        return ds.GeneratorDataset(data_generator, ["features", "labels"])
    
    def save_model_metadata(self, model_info, metrics):
        """保存模型元数据到openGauss"""
        cursor = self.conn.cursor()
        cursor.execute("""
            INSERT INTO ai_models 
            (model_name, model_path, accuracy, created_time) 
            VALUES (%s, %s, %s, NOW())
        """, (model_info['name'], model_info['path'], metrics['accuracy']))
        self.conn.commit()
模式三:端到端AI流水线
import mindspore as ms
from mindspore import nn, context
from mindspore.train import Model, Callback
import pg8000  # OpenGauss Python驱动

class AIPipeline:
    def __init__(self, db_config):
        self.db_config = db_config
        self.setup_mindspore()
   
    def setup_mindspore(self):
        """配置MindSpore运行环境"""
        context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
   
    def create_feature_engineering_pipeline(self):
        """创建特征工程流水线"""
        # 从openGauss读取原始数据
        feature_query = """
            SELECT user_id, 
                   feature1, feature2, feature3,
                   label
            FROM user_behavior_features
            WHERE partition_date = '2024-01-01'
        """
        
        dataset = self.load_data_from_opengauss(feature_query)
        return dataset
   
    def train_and_deploy(self):
        """训练并部署模型"""
        
        # 1. 数据准备
        train_dataset = self.create_feature_engineering_pipeline()
       
        # 2. 模型定义
        net = self.create_model()
        loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
        optimizer = nn.Adam(net.trainable_params(), learning_rate=0.001)
       
        # 3. 模型训练
        model = Model(net, loss_fn, optimizer, metrics={'accuracy'})
        
        # 自定义回调,保存训练指标到openGauss
        class DBCallback(Callback):
            def __init__(self, db_connection):
                self.db_conn = db_connection
            
            def step_end(self, run_context):
                cb_params = run_context.original_args()
                # 保存训练指标到数据库
                self.save_metrics(cb_params)
        
        model.train(epoch=10, callbacks=[DBCallback(self.get_db_connection())])
        
        # 4. 保存模型到openGauss
        self.save_model_to_db(net, "user_behavior_model")
        
        return net
    
    def save_model_to_db(self, model, model_name):
        """将模型保存到openGauss的BLOB字段"""
        # 导出模型为二进制
        ms.export(model, ms.Tensor(np.random.randn(1, 10).astype(np.float32)), 
                 file_name=model_name, file_format='MINDIR')
        
        with open(f"{model_name}.mindir", 'rb') as f:
            model_binary = f.read()
        
        # 保存到数据库
        conn = self.get_db_connection()
        cursor = conn.cursor()
        cursor.execute("""
            INSERT INTO deployed_models 
            (model_name, model_binary, model_type, version, created_time)
            VALUES (%s, %s, %s, %s, NOW())
        """, (model_name, model_binary, 'MINDIR', '1.0'))
        conn.commit()

03 实战案例:智能推荐系统

1、场景描述

构建一个基于用户行为数据的实时推荐系统,使用MindSpore进行深度学习模型训练,openGauss存储特征数据和模型。

2、系统架构

class IntelligentRecommendationSystem:
    def __init__(self):
        self.db_loader = openGaussDataLoader({
            'host': 'localhost',
            'database': 'recommendation_db',
            'user': 'ai_user',
            'password': 'password'
        })
    
    def build_user_embedding_model(self):
        """构建用户嵌入模型"""
        # 从OpenGauss加载用户行为序列
        behavior_query = """
            SELECT user_id, 
                   ARRAY_AGG(item_id ORDER BY action_time) as behavior_sequence,
                   ARRAY_AGG(action_type ORDER BY action_time) as action_types
            FROM user_actions 
            WHERE action_time > NOW() - INTERVAL '30 days'
            GROUP BY user_id
        """
        
        # 使用MindSpore构建序列模型
        class UserBehaviorModel(nn.Cell):
            def __init__(self, vocab_size, embedding_dim, hidden_dim):
                super().__init__()
                self.embedding = nn.Embedding(vocab_size, embedding_dim)
                self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
                self.output_layer = nn.Dense(hidden_dim, vocab_size)
           
            def construct(self, x):
                x = self.embedding(x)
                lstm_out, _ = self.lstm(x)
                return self.output_layer(lstm_out[:, -1, :])
        
        return UserBehaviorModel(vocab_size=10000, embedding_dim=256, hidden_dim=512)
    
    def real_time_recommendation(self, user_id, top_k=10):
        """实时推荐服务"""
        # 1. 从openGauss获取用户最新特征
        user_query = f"""
            SELECT recent_behaviors, user_embedding, preference_vector
            FROM user_profiles 
            WHERE user_id = {user_id}
        """
        
        # 2. 加载预训练模型
        model = self.load_model_from_db("user_behavior_model")
        
        # 3. 生成推荐结果
        recommendations = self.generate_recommendations(model, user_id)
       
        # 4. 记录推荐结果用于后续优化
        self.log_recommendation_result(user_id, recommendations)
        
        return recommendations[:top_k]

3、openGauss中的AI相关表设计

-- 特征存储表
CREATE TABLE user_behavior_features (
    user_id BIGINT PRIMARY KEY,
    feature_vector FLOAT8[],  -- 数组类型存储特征向量
    behavior_sequence INT[],   -- 用户行为序列
    last_updated TIMESTAMP
);

-- 模型元数据表
CREATE TABLE ai_model_registry (
    model_id SERIAL PRIMARY KEY,
    model_name VARCHAR(200) NOT NULL,
    model_type VARCHAR(50),   -- MINDIR, ONNX等
    model_binary BYTEA,       -- 模型二进制存储
    accuracy FLOAT,
    precision FLOAT,
    recall FLOAT,
    created_time TIMESTAMP,
    is_active BOOLEAN DEFAULT TRUE
);

-- 推理结果表
CREATE TABLE model_predictions (
    prediction_id BIGSERIAL PRIMARY KEY,
    model_id INTEGER REFERENCES ai_model_registry(model_id),
    input_data JSONB,         -- 输入数据
    output_data JSONB,        -- 预测结果
    confidence FLOAT,
    created_time TIMESTAMP
);

-- 特征工程流水线配置
CREATE TABLE feature_pipelines (
    pipeline_id SERIAL PRIMARY KEY,
    pipeline_name VARCHAR(100),
    sql_query TEXT,           -- 特征提取SQL
    preprocessing_script TEXT,-- 预处理逻辑
    schedule_cron VARCHAR(50),-- 调度配置
    is_active BOOLEAN DEFAULT TRUE
);

04 性能优化策略

1、数据读取优化

class OptimizedDataLoader:
    def __init__(self, db_config):
        self.db_config = db_config
        self.connection_pool = self.create_connection_pool()
    
    def create_connection_pool(self):
        """创建数据库连接池"""
        # 使用连接池避免频繁连接开销
        pass
   
    def parallel_data_loading(self, shard_queries):
        """并行数据加载"""
        from concurrent.futures import ThreadPoolExecutor
        
        def load_shard(query):
            conn = self.connection_pool.get_connection()
            try:
                cursor = conn.cursor()
                cursor.execute(query)
                return cursor.fetchall()
            finally:
                self.connection_pool.release_connection(conn)
        
        with ThreadPoolExecutor(max_workers=4) as executor:
            results = list(executor.map(load_shard, shard_queries))
        
        return np.concatenate(results)
    
    def incremental_training_data(self, last_training_time):
        """增量训练数据加载"""
        incremental_query = f"""
            SELECT user_id, features, label
            FROM training_data 
            WHERE updated_time > '{last_training_time}'
            AND label IS NOT NULL
        """
        return self.load_data_from_opengauss(incremental_query)

2、模型部署优化

-- 使用openGauss的存储过程实现模型版本管理
CREATE OR REPLACE FUNCTION deploy_ai_model(
    model_name VARCHAR,
    model_binary BYTEA,
    accuracy FLOAT
) RETURNS INTEGER AS $$
DECLARE
    new_version INTEGER;
BEGIN
    -- 停用旧版本
    UPDATE ai_model_registry 
    SET is_active = FALSE 
    WHERE model_name = deploy_ai_model.model_name;
    
    -- 插入新版本
    INSERT INTO ai_model_registry 
    (model_name, model_binary, accuracy, created_time, is_active)
    VALUES (model_name, model_binary, accuracy, NOW(), TRUE)
    RETURNING model_id INTO new_version;
    
    RETURN new_version;
END;
$$ LANGUAGE plpgsql;

-- 创建模型预测函数
CREATE OR REPLACE FUNCTION ml_predict(
    model_id INTEGER,
    input_features FLOAT8[]
) RETURNS JSONB AS $$
DECLARE
    model_binary BYTEA;
    prediction_result JSONB;
BEGIN
    -- 获取模型二进制
    SELECT model_binary INTO model_binary
    FROM ai_model_registry 
    WHERE model_id = ml_predict.model_id AND is_active = TRUE;
    
    -- 调用外部推理服务(实际部署中)
    -- prediction_result = http_post('http://mindspore-service/predict', 
    --                              json_build_object('model', model_binary, 
    --                                              'features', input_features));
    
    RETURN prediction_result;
END;
$$ LANGUAGE plpgsql;

05 监控与运维

1、训练过程监控

class TrainingMonitor:
    def __init__(self, db_connection):
        self.db_conn = db_connection
   
    def log_training_metrics(self, epoch, metrics, model_id):
        """记录训练指标到openGauss"""
        cursor = self.db_conn.cursor()
        cursor.execute("""
            INSERT INTO training_metrics 
            (model_id, epoch, loss, accuracy, learning_rate, log_time)
            VALUES (%s, %s, %s, %s, %s, NOW())
        """, (model_id, epoch, metrics['loss'], 
              metrics['accuracy'], metrics['lr']))
        self.db_conn.commit()
    
    def detect_training_anomalies(self, model_id):
        """检测训练异常"""
        cursor = self.db_conn.cursor()
        cursor.execute("""
            WITH metrics_trend AS (
                SELECT epoch, loss,
                       LAG(loss) OVER (ORDER BY epoch) as prev_loss
                FROM training_metrics 
                WHERE model_id = %s
                ORDER BY epoch
            )
            SELECT epoch, loss
            FROM metrics_trend
            WHERE loss > prev_loss * 1.5  -- 损失突然增加50%
            OR loss IS NULL
        """, (model_id,))
        
        return cursor.fetchall()

2、模型性能追踪

-- 模型性能分析报表
CREATE VIEW model_performance_dashboard AS
SELECT 
    m.model_name,
    COUNT(p.prediction_id) as total_predictions,
    AVG(p.confidence) as avg_confidence,
    MIN(tm.loss) as best_training_loss,
    MAX(tm.accuracy) as best_training_accuracy,
    m.created_time as deploy_time
FROM ai_model_registry m
LEFT JOIN model_predictions p ON m.model_id = p.model_id
LEFT JOIN training_metrics tm ON m.model_id = tm.model_id
WHERE m.is_active = TRUE
GROUP BY m.model_id, m.model_name, m.created_time;

06 最佳实践总结

1、数据治理

  • 使用openGauss分区表管理历史特征数据

  • 建立特征版本控制机制

  • 实现数据质量监控流水线

2. 模型生命周期管理

  • 模型版本化存储和部署

  • A/B测试流量分割

  • 自动化模型回滚机制

3. 性能优化

  • 利用openGauss列存优化特征读取

  • MindSpore图模式加速推理

  • 批处理预测减少数据库压力

4. 安全与合规

  • 敏感数据脱敏处理

  • 模型访问权限控制

  • 预测结果审计日志

07 未来展望

MindSpore与openGauss的深度集成为构建企业级AI应用提供了强大基础。随着技术的不断发展,我们可以期待:

  • 更紧密的运行时集成:数据库内直接执行MindSpore模型

  • 自动化特征工程:基于数据分布的智能特征生成

  • 联邦学习支持:在保护数据隐私的前提下进行联合建模

  • AI-SQL融合:在SQL中直接调用AI模型能力

通过MindSpore与openGauss的有机结合,企业能够构建更加智能、高效的数据驱动应用,真正实现AI技术的业务价值转化。

Logo

鲲鹏昇腾开发者社区是面向全社会开放的“联接全球计算开发者,聚合华为+生态”的社区,内容涵盖鲲鹏、昇腾资源,帮助开发者快速获取所需的知识、经验、软件、工具、算力,支撑开发者易学、好用、成功,成为核心开发者。

更多推荐