MindSpore与openGauss 的深度融合实践
昇思MindSpore与openGauss深度集成技术解析 摘要:本文探讨了华为两大开源项目——昇思MindSpore AI框架与openGauss数据库的协同创新。通过三种集成模式(数据库内AI、外部AI服务调用、端到端AI流水线),展示了如何构建智能数据驱动应用。重点介绍了智能推荐系统实战案例,包括用户嵌入模型构建、实时推荐服务实现及数据库表设计。文章还分享了性能优化策略(数据读取优化、模型部
昇思MindSpore2024年技术帖分享大会圆满结束!全年收获80+高质量技术帖, 2025年全新升级,推出“2025年昇思干货小卖部,你投我就收!”,活动继续每月征集技术帖。本期技术文章由社区开发者breeze输出并投稿。如果您对活动感兴趣,欢迎在昇思论坛投稿。
在人工智能与大数据时代,AI框架与数据库系统的深度集成正在成为新的技术趋势。本文将深入探讨华为两大开源项目——昇思MindSpore AI框架与openGauss数据库的协同工作,展示如何构建更智能的数据驱动应用。
01 技术栈概述
1、MindSpore:全场景AI框架
MindSpore是开源的深度学习框架,具备端边云全场景协同、高效易用等特性,支持自动并行、深度优化等先进特性。
import mindspore as ms
from mindspore import nn, ops
# 简单的MindSpore模型定义
class SimpleNet(nn.Cell):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc1 = nn.Dense(784, 512)
self.fc2 = nn.Dense(512, 256)
self.fc3 = nn.Dense(256, 10)
self.relu = nn.ReLU()
def construct(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return self.fc3(x)
2、openGauss:企业级AI-Native数据库
openGauss不仅是一个高性能的关系数据库,更在AI原生能力上进行了深度探索,提供了内置的AI算法和模型管理能力。
02 深度集成架构
1、数据流架构设计
+----------------+ +-----------------+ +-----------------+
| MindSpore | <--> | OpenGauss | <--> | 业务应用 |
| AI框架 | | 数据库 | | |
+----------------+ +-----------------+ +-----------------+
^ ^ ^
| | |
+----------------+ +-----------------+ +-----------------+
| 模型训练 | | 特征存储与 | | 智能决策 |
| 与推理服务 | | 数据管理 | | 与业务逻辑 |
+----------------+ +-----------------+ +-----------------+
2、三种集成模式
模式一:数据库内AI(openGauss AI能力)
-- openGauss内置的AI函数使用
-- 1. 数据预处理
CREATE TABLE customer_features AS
SELECT
customer_id,
MADLIB.zscore_normalize(age) as normalized_age,
MADLIB.zscore_normalize(income) as normalized_income
FROM customer_raw_data;
-- 2. 内置机器学习算法
SELECT MADLIB.linregr_train(
'customer_features',
'customer_linear_model',
'spending_score',
'ARRAY[1, normalized_age, normalized_income]'
);
-- 3. 模型预测
SELECT customer_id,
MADLIB.linregr_predict(
'ARRAY[1, normalized_age, normalized_income]',
m.coef
) as predicted_spending
FROM customer_features, customer_linear_model m;
模式二:外部AI服务调用
import mindspore as ms
import psycopg2
from mindspore import dataset as ds
class openGaussDataLoader:
def __init__(self, connection_params):
self.conn = psycopg2.connect(**connection_params)
def load_training_data(self, query, batch_size=32):
"""从openGauss加载训练数据"""
cursor = self.conn.cursor()
cursor.execute(query)
# 转换为MindSpore Dataset
def data_generator():
while True:
rows = cursor.fetchmany(batch_size)
if not rows:
break
features = [row[:-1] for row in rows]
labels = [row[-1] for row in rows]
yield (np.array(features, dtype=np.float32),
np.array(labels, dtype=np.float32))
return ds.GeneratorDataset(data_generator, ["features", "labels"])
def save_model_metadata(self, model_info, metrics):
"""保存模型元数据到openGauss"""
cursor = self.conn.cursor()
cursor.execute("""
INSERT INTO ai_models
(model_name, model_path, accuracy, created_time)
VALUES (%s, %s, %s, NOW())
""", (model_info['name'], model_info['path'], metrics['accuracy']))
self.conn.commit()
模式三:端到端AI流水线
import mindspore as ms
from mindspore import nn, context
from mindspore.train import Model, Callback
import pg8000 # OpenGauss Python驱动
class AIPipeline:
def __init__(self, db_config):
self.db_config = db_config
self.setup_mindspore()
def setup_mindspore(self):
"""配置MindSpore运行环境"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def create_feature_engineering_pipeline(self):
"""创建特征工程流水线"""
# 从openGauss读取原始数据
feature_query = """
SELECT user_id,
feature1, feature2, feature3,
label
FROM user_behavior_features
WHERE partition_date = '2024-01-01'
"""
dataset = self.load_data_from_opengauss(feature_query)
return dataset
def train_and_deploy(self):
"""训练并部署模型"""
# 1. 数据准备
train_dataset = self.create_feature_engineering_pipeline()
# 2. 模型定义
net = self.create_model()
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
optimizer = nn.Adam(net.trainable_params(), learning_rate=0.001)
# 3. 模型训练
model = Model(net, loss_fn, optimizer, metrics={'accuracy'})
# 自定义回调,保存训练指标到openGauss
class DBCallback(Callback):
def __init__(self, db_connection):
self.db_conn = db_connection
def step_end(self, run_context):
cb_params = run_context.original_args()
# 保存训练指标到数据库
self.save_metrics(cb_params)
model.train(epoch=10, callbacks=[DBCallback(self.get_db_connection())])
# 4. 保存模型到openGauss
self.save_model_to_db(net, "user_behavior_model")
return net
def save_model_to_db(self, model, model_name):
"""将模型保存到openGauss的BLOB字段"""
# 导出模型为二进制
ms.export(model, ms.Tensor(np.random.randn(1, 10).astype(np.float32)),
file_name=model_name, file_format='MINDIR')
with open(f"{model_name}.mindir", 'rb') as f:
model_binary = f.read()
# 保存到数据库
conn = self.get_db_connection()
cursor = conn.cursor()
cursor.execute("""
INSERT INTO deployed_models
(model_name, model_binary, model_type, version, created_time)
VALUES (%s, %s, %s, %s, NOW())
""", (model_name, model_binary, 'MINDIR', '1.0'))
conn.commit()
03 实战案例:智能推荐系统
1、场景描述
构建一个基于用户行为数据的实时推荐系统,使用MindSpore进行深度学习模型训练,openGauss存储特征数据和模型。
2、系统架构
class IntelligentRecommendationSystem:
def __init__(self):
self.db_loader = openGaussDataLoader({
'host': 'localhost',
'database': 'recommendation_db',
'user': 'ai_user',
'password': 'password'
})
def build_user_embedding_model(self):
"""构建用户嵌入模型"""
# 从OpenGauss加载用户行为序列
behavior_query = """
SELECT user_id,
ARRAY_AGG(item_id ORDER BY action_time) as behavior_sequence,
ARRAY_AGG(action_type ORDER BY action_time) as action_types
FROM user_actions
WHERE action_time > NOW() - INTERVAL '30 days'
GROUP BY user_id
"""
# 使用MindSpore构建序列模型
class UserBehaviorModel(nn.Cell):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
self.output_layer = nn.Dense(hidden_dim, vocab_size)
def construct(self, x):
x = self.embedding(x)
lstm_out, _ = self.lstm(x)
return self.output_layer(lstm_out[:, -1, :])
return UserBehaviorModel(vocab_size=10000, embedding_dim=256, hidden_dim=512)
def real_time_recommendation(self, user_id, top_k=10):
"""实时推荐服务"""
# 1. 从openGauss获取用户最新特征
user_query = f"""
SELECT recent_behaviors, user_embedding, preference_vector
FROM user_profiles
WHERE user_id = {user_id}
"""
# 2. 加载预训练模型
model = self.load_model_from_db("user_behavior_model")
# 3. 生成推荐结果
recommendations = self.generate_recommendations(model, user_id)
# 4. 记录推荐结果用于后续优化
self.log_recommendation_result(user_id, recommendations)
return recommendations[:top_k]
3、openGauss中的AI相关表设计
-- 特征存储表
CREATE TABLE user_behavior_features (
user_id BIGINT PRIMARY KEY,
feature_vector FLOAT8[], -- 数组类型存储特征向量
behavior_sequence INT[], -- 用户行为序列
last_updated TIMESTAMP
);
-- 模型元数据表
CREATE TABLE ai_model_registry (
model_id SERIAL PRIMARY KEY,
model_name VARCHAR(200) NOT NULL,
model_type VARCHAR(50), -- MINDIR, ONNX等
model_binary BYTEA, -- 模型二进制存储
accuracy FLOAT,
precision FLOAT,
recall FLOAT,
created_time TIMESTAMP,
is_active BOOLEAN DEFAULT TRUE
);
-- 推理结果表
CREATE TABLE model_predictions (
prediction_id BIGSERIAL PRIMARY KEY,
model_id INTEGER REFERENCES ai_model_registry(model_id),
input_data JSONB, -- 输入数据
output_data JSONB, -- 预测结果
confidence FLOAT,
created_time TIMESTAMP
);
-- 特征工程流水线配置
CREATE TABLE feature_pipelines (
pipeline_id SERIAL PRIMARY KEY,
pipeline_name VARCHAR(100),
sql_query TEXT, -- 特征提取SQL
preprocessing_script TEXT,-- 预处理逻辑
schedule_cron VARCHAR(50),-- 调度配置
is_active BOOLEAN DEFAULT TRUE
);
04 性能优化策略
1、数据读取优化
class OptimizedDataLoader:
def __init__(self, db_config):
self.db_config = db_config
self.connection_pool = self.create_connection_pool()
def create_connection_pool(self):
"""创建数据库连接池"""
# 使用连接池避免频繁连接开销
pass
def parallel_data_loading(self, shard_queries):
"""并行数据加载"""
from concurrent.futures import ThreadPoolExecutor
def load_shard(query):
conn = self.connection_pool.get_connection()
try:
cursor = conn.cursor()
cursor.execute(query)
return cursor.fetchall()
finally:
self.connection_pool.release_connection(conn)
with ThreadPoolExecutor(max_workers=4) as executor:
results = list(executor.map(load_shard, shard_queries))
return np.concatenate(results)
def incremental_training_data(self, last_training_time):
"""增量训练数据加载"""
incremental_query = f"""
SELECT user_id, features, label
FROM training_data
WHERE updated_time > '{last_training_time}'
AND label IS NOT NULL
"""
return self.load_data_from_opengauss(incremental_query)
2、模型部署优化
-- 使用openGauss的存储过程实现模型版本管理
CREATE OR REPLACE FUNCTION deploy_ai_model(
model_name VARCHAR,
model_binary BYTEA,
accuracy FLOAT
) RETURNS INTEGER AS $$
DECLARE
new_version INTEGER;
BEGIN
-- 停用旧版本
UPDATE ai_model_registry
SET is_active = FALSE
WHERE model_name = deploy_ai_model.model_name;
-- 插入新版本
INSERT INTO ai_model_registry
(model_name, model_binary, accuracy, created_time, is_active)
VALUES (model_name, model_binary, accuracy, NOW(), TRUE)
RETURNING model_id INTO new_version;
RETURN new_version;
END;
$$ LANGUAGE plpgsql;
-- 创建模型预测函数
CREATE OR REPLACE FUNCTION ml_predict(
model_id INTEGER,
input_features FLOAT8[]
) RETURNS JSONB AS $$
DECLARE
model_binary BYTEA;
prediction_result JSONB;
BEGIN
-- 获取模型二进制
SELECT model_binary INTO model_binary
FROM ai_model_registry
WHERE model_id = ml_predict.model_id AND is_active = TRUE;
-- 调用外部推理服务(实际部署中)
-- prediction_result = http_post('http://mindspore-service/predict',
-- json_build_object('model', model_binary,
-- 'features', input_features));
RETURN prediction_result;
END;
$$ LANGUAGE plpgsql;
05 监控与运维
1、训练过程监控
class TrainingMonitor:
def __init__(self, db_connection):
self.db_conn = db_connection
def log_training_metrics(self, epoch, metrics, model_id):
"""记录训练指标到openGauss"""
cursor = self.db_conn.cursor()
cursor.execute("""
INSERT INTO training_metrics
(model_id, epoch, loss, accuracy, learning_rate, log_time)
VALUES (%s, %s, %s, %s, %s, NOW())
""", (model_id, epoch, metrics['loss'],
metrics['accuracy'], metrics['lr']))
self.db_conn.commit()
def detect_training_anomalies(self, model_id):
"""检测训练异常"""
cursor = self.db_conn.cursor()
cursor.execute("""
WITH metrics_trend AS (
SELECT epoch, loss,
LAG(loss) OVER (ORDER BY epoch) as prev_loss
FROM training_metrics
WHERE model_id = %s
ORDER BY epoch
)
SELECT epoch, loss
FROM metrics_trend
WHERE loss > prev_loss * 1.5 -- 损失突然增加50%
OR loss IS NULL
""", (model_id,))
return cursor.fetchall()
2、模型性能追踪
-- 模型性能分析报表
CREATE VIEW model_performance_dashboard AS
SELECT
m.model_name,
COUNT(p.prediction_id) as total_predictions,
AVG(p.confidence) as avg_confidence,
MIN(tm.loss) as best_training_loss,
MAX(tm.accuracy) as best_training_accuracy,
m.created_time as deploy_time
FROM ai_model_registry m
LEFT JOIN model_predictions p ON m.model_id = p.model_id
LEFT JOIN training_metrics tm ON m.model_id = tm.model_id
WHERE m.is_active = TRUE
GROUP BY m.model_id, m.model_name, m.created_time;
06 最佳实践总结
1、数据治理
-
使用openGauss分区表管理历史特征数据
-
建立特征版本控制机制
-
实现数据质量监控流水线
2. 模型生命周期管理
-
模型版本化存储和部署
-
A/B测试流量分割
-
自动化模型回滚机制
3. 性能优化
-
利用openGauss列存优化特征读取
-
MindSpore图模式加速推理
-
批处理预测减少数据库压力
4. 安全与合规
-
敏感数据脱敏处理
-
模型访问权限控制
-
预测结果审计日志
07 未来展望
MindSpore与openGauss的深度集成为构建企业级AI应用提供了强大基础。随着技术的不断发展,我们可以期待:
-
更紧密的运行时集成:数据库内直接执行MindSpore模型
-
自动化特征工程:基于数据分布的智能特征生成
-
联邦学习支持:在保护数据隐私的前提下进行联合建模
-
AI-SQL融合:在SQL中直接调用AI模型能力
通过MindSpore与openGauss的有机结合,企业能够构建更加智能、高效的数据驱动应用,真正实现AI技术的业务价值转化。
鲲鹏昇腾开发者社区是面向全社会开放的“联接全球计算开发者,聚合华为+生态”的社区,内容涵盖鲲鹏、昇腾资源,帮助开发者快速获取所需的知识、经验、软件、工具、算力,支撑开发者易学、好用、成功,成为核心开发者。
更多推荐



所有评论(0)