昇思25天学习打卡营第22天|保存与加载
训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署。要加载模型权重,需要先创建相同模型的实例,然后使用。接口,传入网络和指定的保存路径。
·
训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署。
保存模型使用save_checkpoint接口,传入网络和指定的保存路径。
model = network()
mindspore.save_checkpoint(model, "model.ckpt")
要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpoint和load_param_into_net方法加载参数。
鲲鹏昇腾开发者社区是面向全社会开放的“联接全球计算开发者,聚合华为+生态”的社区,内容涵盖鲲鹏、昇腾资源,帮助开发者快速获取所需的知识、经验、软件、工具、算力,支撑开发者易学、好用、成功,成为核心开发者。
更多推荐



所有评论(0)