昇思25天学习打卡营第7天|模型训练、模型保存与加载
接口直接将模型保存为MindIR,同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。同样,保存与加载在第一章中也介绍过,熟悉下新的写法。
·
本章主要介绍模型的训练、保存和加载,在第一章中已经学习过,主要是熟悉新的写法,没有其他特殊的处理,核心内容是实现随机梯度下降算法:

模型训练:
模型训练一般分为四个步骤:
- 构建数据集。
- 定义神经网络模型。
- 定义超参、损失函数及优化器。
- 输入数据集进行训练与评估。
构建数据集:
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
# Download data from open datasets
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
def datapipe(path, batch_size):
image_transforms = [
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
label_transform = transforms.TypeCast(mindspore.int32)
dataset = MnistDataset(path)
dataset = dataset.map(image_transforms, 'image')
dataset = dataset.map(label_transform, 'label')
dataset = dataset.batch(batch_size)
return dataset
train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)
定义神经网络模型:
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10)
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
model = Network()
定义超参、损失函数和优化器:
## 超参
epochs = 3 # 训练轮次
batch_size = 64 # 批次大小
learning_rate = 1e-2 # 学习率
## 损失函数
loss_fn = nn.CrossEntropyLoss()
## 优化器
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
训练与评估:
## 定义前向传播
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
## 自微分函数
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
## 定义一步训练
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
return loss
## 训练轮训
def train_loop(model, dataset):
size = dataset.get_dataset_size()
model.set_train()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss = train_step(data, label)
if batch % 100 == 0:
loss, current = loss.asnumpy(), batch
print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
## 测试轮训
def test_loop(model, dataset, loss_fn):
num_batches = dataset.get_dataset_size()
model.set_train(False)
total, test_loss, correct = 0, 0, 0
for data, label in dataset.create_tuple_iterator():
pred = model(data)
total += len(data)
test_loss += loss_fn(pred, label).asnumpy()
correct += (pred.argmax(1) == label).asnumpy().sum()
test_loss /= num_batches
correct /= total
print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(model, train_dataset)
test_loop(model, test_dataset, loss_fn)
print("Done!")
保存与加载:
同样,保存与加载在第一章中也介绍过,熟悉下新的写法。
import numpy as np
import mindspore
from mindspore import nn
from mindspore import Tensor
def network():
model = nn.SequentialCell(
nn.Flatten(),
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10))
return model
## 保存模型
model = network()
mindspore.save_checkpoint(model, "model.ckpt")
## 实例化和加载模型
model = network()
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
![]()
保存和加载MindIR:
可使用export接口直接将模型保存为MindIR,同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。
model = network()
inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
mindspore.export(model, inputs, file_name="model", file_format="MINDIR")
mindspore.set_context(mode=mindspore.GRAPH_MODE)
graph = mindspore.load("model.mindir")
model = nn.GraphCell(graph) # 仅支持图模式
outputs = model(inputs)
print(outputs.shape)

鲲鹏昇腾开发者社区是面向全社会开放的“联接全球计算开发者,聚合华为+生态”的社区,内容涵盖鲲鹏、昇腾资源,帮助开发者快速获取所需的知识、经验、软件、工具、算力,支撑开发者易学、好用、成功,成为核心开发者。
更多推荐


所有评论(0)