MindSpore社区活动:Transformer也能图像分类
近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。
CSDN社区:

Vision Transformer(ViT)简介
近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。
ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。
模型结构
ViT模型的主体结构是基于Transformer模型的Encoder部分(部分结构顺序有调整,如:Normalization的位置与标准Transformer不同),其结构图[1]如下:

下面将通过代码实例来详细解释基于ViT实现ImageNet分类任务。
注意,本教程在CPU上运行时间过长,不建议使用CPU运行。
环境准备与数据读取
开始实验之前,请确保本地已经安装了Python环境并安装了MindSpore。
mindspore安装如下:
1. 根据环境硬件平台选择对应的安装包:
2.通过安装命令安装, 或者先把安装包下载下来通过pip install xxx.whl安装;
我这边是gpu x86环境, 安装命令:
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0/MindSpore/unified/x86_64/mindspore-2.0.0-cp37-cp37m-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
3.安装完成后配置相关依赖以及环境变量
环境准备好之后,首先我们需要下载本案例的数据集,可通过http://image-net.org下载完整的ImageNet数据集(
https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/vit_imagenet_dataset.zip),本案例应用的数据集是从ImageNet中筛选出来的子集。
运行第一段代码时会自动下载并解压,请确保你的数据集路径如以下结构。
.dataset/ ├── ILSVRC2012_devkit_t12.tar.gz ├── train/ ├── infer/ └── val/
模型解析
下面将通过代码来细致剖析ViT模型的内部结构。
Transformer基本原理
Transformer模型源于2017年的一篇文章[2]。在这篇文章中提出的基于Attention机制的编码器-解码器型结构在自然语言处理领域获得了巨大的成功。模型结构如下图所示:

其主要结构为多个Encoder和Decoder模块所组成,其中Encoder和Decoder的详细结构如下图[2]所示:

Encoder与Decoder由许多结构组成,如:多头注意力(Multi-Head Attention)层,Feed Forward层,Normaliztion层,甚至残差连接(Residual Connection,图中的“Add”)。不过,其中最重要的结构是多头注意力(Multi-Head Attention)结构,该结构基于自注意力(Self-Attention)机制,是多个Self-Attention的并行组成。
所以,理解了Self-Attention就抓住了Transformer的核心。
Attention模块
以下是Self-Attention的解释,其核心内容是为输入向量的每个单词学习一个权重。通过给定一个任务相关的查询向量Query向量,计算Query和各个Key的相似性或者相关性得到注意力分布,即得到每个Key对应Value的权重系数,然后对Value进行加权求和得到最终的Attention数值。
在Self-Attention中:
-
最初的输入向量首先会经过Embedding层映射成Q(Query),K(Key),V(Value)三个向量,由于是并行操作,所以代码中是映射成为dim x 3的向量然后进行分割,换言之,如果你的输入向量为一个向量序列(x1,x2,x3),其中的x1,x2,x3都是一维向量,那么每一个一维向量都会经过Embedding层映射出Q,K,V三个向量,只是Embedding矩阵不同,矩阵参数也是通过学习得到的。这里大家可以认为,Q,K,V三个矩阵是发现向量之间关联信息的一种手段,需要经过学习得到,至于为什么是Q,K,V三个,主要是因为需要两个向量点乘以获得权重,又需要另一个向量来承载权重向加的结果,所以,最少需要3个矩阵。
-
自注意力机制的自注意主要体现在它的Q,K,V都来源于其自身,也就是该过程是在提取输入的不同顺序的向量的联系与特征,最终通过不同顺序向量之间的联系紧密性(Q与K乘积经过Softmax的结果)来表现出来。Q,K,V得到后就需要获取向量间权重,需要对Q和K进行点乘并除以维度的平方根,对所有向量的结果进行Softmax处理,通过公式(2)的操作,我们获得了向量之间的关系权重。
-
其最终输出则是通过V这个映射后的向量与Q,K经过Softmax结果进行weight sum获得,这个过程可以理解为在全局上进行自注意表示。每一组Q,K,V最后都有一个V输出,这是Self-Attention得到的最终结果,是当前向量在结合了它与其他向量关联权重后得到的结果。
整体流程如下:

模型开始训练前,需要设定损失函数,优化器,回调函数等。
本案例采用了一张Doberman的图片作为推理图片来测试模型表现,期望模型可以给出正确的预测结果。
训练以及推理结果如下:


accuracy体现了模型预测的准确率~
在进行模型推理之前,首先要定义一个对推理图片进行数据预处理的方法。该方法可以对我们的推理图片进行resize和normalize处理,这样才能与我们训练时的输入数据匹配。
推理过程完成后,找到图片的推理结果,可以看出预测结果是Doberman,与期望结果相同,验证了模型的准确性。

鲲鹏昇腾开发者社区是面向全社会开放的“联接全球计算开发者,聚合华为+生态”的社区,内容涵盖鲲鹏、昇腾资源,帮助开发者快速获取所需的知识、经验、软件、工具、算力,支撑开发者易学、好用、成功,成为核心开发者。
更多推荐



所有评论(0)