昇思训练营打卡第十一天(FCN图像语义分割)
因为模型网络中所有的层都是卷积层,故称为全卷积网络。
·
什么是FCN模型?
因为模型网络中所有的层都是卷积层,故称为全卷积网络。
全卷积神经网络主要使用了三种技术:
- 卷积化(Convolutional)
- 上采样(Upsample)
- 跳跃结构(Skip Layer)
语义分割的目的是对图像中每个像素点进行分类。与普通的分类任务只输出某个类别不同,语义分割任务输出与输入大小相同的图像,输出图像的每个像素对应了输入图像每个像素的类别。
数据处理
数据预处理
由于PASCAL VOC 2012数据集中图像的分辨率大多不一致,无法放在一个tensor中,故输入前需做标准化处理。
数据加载
将PASCAL VOC 2012数据集与SDB数据集进行混合。
import cv2
import mindspore.dataset as ds
import numpy as np
class SegDataset:
def __init__(
self,
image_mean,
image_std,
data_file="",
batch_size=32,
crop_size=512,
max_scale=2.0,
min_scale=0.5,
ignore_label=255,
num_classes=21,
num_readers=2,
num_parallel_calls=4,
):
self.data_file = data_file
self.batch_size = batch_size
self.crop_size = crop_size
self.image_mean = np.array(image_mean, dtype=np.float32)
self.image_std = np.array(image_std, dtype=np.float32)
self.max_scale = max_scale
self.min_scale = min_scale
self.ignore_label = ignore_label
self.num_classes = num_classes
self.num_readers = num_readers
self.num_parallel_calls = num_parallel_calls
max_scale > min_scale
def preprocess_dataset(self, image, label):
image_out = cv2.imdecode(np.frombuffer(image, dtype=np.uint8), cv2.IMREAD_COLOR)
label_out = cv2.imdecode(
np.frombuffer(label, dtype=np.uint8), cv2.IMREAD_GRAYSCALE
)
sc = np.random.uniform(self.min_scale, self.max_scale)
new_h, new_w = int(sc * image_out.shape[0]), int(sc * image_out.shape[1])
image_out = cv2.resize(image_out, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
label_out = cv2.resize(
label_out, (new_w, new_h), interpolation=cv2.INTER_NEAREST
)
image_out = (image_out - self.image_mean) / self.image_std
out_h, out_w = max(new_h, self.crop_size), max(new_w, self.crop_size)
pad_h, pad_w = out_h - new_h, out_w - new_w
if pad_h > 0 or pad_w > 0:
image_out = cv2.copyMakeBorder(
image_out, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=0
)
label_out = cv2.copyMakeBorder(
label_out,
0,
pad_h,
0,
pad_w,
cv2.BORDER_CONSTANT,
value=self.ignore_label,
)
offset_h = np.random.randint(0, out_h - self.crop_size + 1)
offset_w = np.random.randint(0, out_w - self.crop_size + 1)
image_out = image_out[
offset_h : offset_h + self.crop_size,
offset_w : offset_w + self.crop_size,
:,
]
label_out = label_out[
offset_h : offset_h + self.crop_size, offset_w : offset_w + self.crop_size
]
if np.random.uniform(0.0, 1.0) > 0.5:
image_out = image_out[:, ::-1, :]
label_out = label_out[:, ::-1]
image_out = image_out.transpose((2, 0, 1))
image_out = image_out.copy()
label_out = label_out.copy()
label_out = label_out.astype("int32")
return image_out, label_out
def get_dataset(self):
ds.config.set_numa_enable(True)
dataset = ds.MindDataset(
self.data_file,
columns_list=["data", "label"],
shuffle=True,
num_parallel_workers=self.num_readers,
)
transforms_list = self.preprocess_dataset
dataset = dataset.map(
operations=transforms_list,
input_columns=["data", "label"],
output_columns=["data", "label"],
num_parallel_workers=self.num_parallel_calls,
)
dataset = dataset.shuffle(buffer_size=self.batch_size * 10)
dataset = dataset.batch(self.batch_size, drop_remainder=True)
return dataset
# 定义创建数据集的参数
IMAGE_MEAN = [103.53, 116.28, 123.675]
IMAGE_STD = [57.375, 57.120, 58.395]
DATA_FILE = "dataset/dataset_fcn8s/mindname.mindrecord"
# 定义模型训练参数
train_batch_size = 4
crop_size = 512
min_scale = 0.5
max_scale = 2.0
ignore_label = 255
num_classes = 21
# 实例化Dataset
dataset = SegDataset(
image_mean=IMAGE_MEAN,
image_std=IMAGE_STD,
data_file=DATA_FILE,
batch_size=train_batch_size,
crop_size=crop_size,
max_scale=max_scale,
min_scale=min_scale,
ignore_label=ignore_label,
num_classes=num_classes,
num_readers=2,
num_parallel_calls=4,
)
dataset = dataset.get_dataset()
训练集可视化
运行以下代码观察载入的数据集图片(数据处理过程中已做归一化处理)。
import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(16, 8))
# 对训练集中的数据进行展示
for i in range(1, 9):
plt.subplot(2, 4, i)
show_data = next(dataset.create_dict_iterator())
show_images = show_data["data"].asnumpy()
show_images = np.clip(show_images, 0, 1)
# 将图片转换HWC格式后进行展示
plt.imshow(show_images[0].transpose(1, 2, 0))
plt.axis("off")
plt.subplots_adjust(wspace=0.05, hspace=0)
plt.show()
网络构建
网络流程
FCN网络的流程如下图所示:
- 输入图像image,经过pool1池化后,尺寸变为原始尺寸的1/2。
- 经过pool2池化,尺寸变为原始尺寸的1/4。
- 接着经过pool3、pool4、pool5池化,大小分别变为原始尺寸的1/8、1/16、1/32。
- 经过conv6-7卷积,输出的尺寸依然是原图的1/32。
- FCN-32s是最后使用反卷积,使得输出图像大小与输入图像相同。
- FCN-16s是将conv7的输出进行反卷积,使其尺寸扩大两倍至原图的1/16,并将其与pool4输出的特征图进行融合,后通过反卷积扩大到原始尺寸。
- FCN-8s是将conv7的输出进行反卷积扩大4倍,将pool4输出的特征图反卷积扩大2倍,并将pool3输出特征图拿出,三者融合后通反卷积扩大到原始尺寸。
import mindspore.nn as nn
class FCN8s(nn.Cell):
def __init__(self, n_class):
super().__init__()
self.n_class = n_class
self.conv1 = nn.SequentialCell(
nn.Conv2d(
in_channels=3,
out_channels=64,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(
in_channels=64,
out_channels=64,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.SequentialCell(
nn.Conv2d(
in_channels=64,
out_channels=128,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(
in_channels=128,
out_channels=128,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(128),
nn.ReLU(),
)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.SequentialCell(
nn.Conv2d(
in_channels=128,
out_channels=256,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(
in_channels=256,
out_channels=256,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(
in_channels=256,
out_channels=256,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(256),
nn.ReLU(),
)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4 = nn.SequentialCell(
nn.Conv2d(
in_channels=256,
out_channels=512,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(
in_channels=512,
out_channels=512,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(
in_channels=512,
out_channels=512,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(512),
nn.ReLU(),
)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5 = nn.SequentialCell(
nn.Conv2d(
in_channels=512,
out_channels=512,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(
in_channels=512,
out_channels=512,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(
in_channels=512,
out_channels=512,
kernel_size=3,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(512),
nn.ReLU(),
)
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv6 = nn.SequentialCell(
nn.Conv2d(
in_channels=512,
out_channels=4096,
kernel_size=7,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(4096),
nn.ReLU(),
)
self.conv7 = nn.SequentialCell(
nn.Conv2d(
in_channels=4096,
out_channels=4096,
kernel_size=1,
weight_init="xavier_uniform",
),
nn.BatchNorm2d(4096),
nn.ReLU(),
)
self.score_fr = nn.Conv2d(
in_channels=4096,
out_channels=self.n_class,
kernel_size=1,
weight_init="xavier_uniform",
)
self.upscore2 = nn.Conv2dTranspose(
in_channels=self.n_class,
out_channels=self.n_class,
kernel_size=4,
stride=2,
weight_init="xavier_uniform",
)
self.score_pool4 = nn.Conv2d(
in_channels=512,
out_channels=self.n_class,
kernel_size=1,
weight_init="xavier_uniform",
)
self.upscore_pool4 = nn.Conv2dTranspose(
in_channels=self.n_class,
out_channels=self.n_class,
kernel_size=4,
stride=2,
weight_init="xavier_uniform",
)
self.score_pool3 = nn.Conv2d(
in_channels=256,
out_channels=self.n_class,
kernel_size=1,
weight_init="xavier_uniform",
)
self.upscore8 = nn.Conv2dTranspose(
in_channels=self.n_class,
out_channels=self.n_class,
kernel_size=16,
stride=8,
weight_init="xavier_uniform",
)
def construct(self, x):
x1 = self.conv1(x)
p1 = self.pool1(x1)
x2 = self.conv2(p1)
p2 = self.pool2(x2)
x3 = self.conv3(p2)
p3 = self.pool3(x3)
x4 = self.conv4(p3)
p4 = self.pool4(x4)
x5 = self.conv5(p4)
p5 = self.pool5(x5)
x6 = self.conv6(p5)
x7 = self.conv7(x6)
sf = self.score_fr(x7)
u2 = self.upscore2(sf)
s4 = self.score_pool4(p4)
f4 = s4 + u2
u4 = self.upscore_pool4(f4)
s3 = self.score_pool3(p3)
f3 = s3 + u4
out = self.upscore8(f3)
return out
训练准备
导入VGG-16部分预训练权重
FCN使用VGG-16作为骨干网络,用于实现图像编码。使用下面代码导入VGG-16预训练模型的部分预训练权重。
from download import download
from mindspore import load_checkpoint, load_param_into_net
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/fcn8s_vgg16_pretrain.ckpt"
download(url, "fcn8s_vgg16_pretrain.ckpt", replace=True)
def load_vgg16():
ckpt_vgg16 = "fcn8s_vgg16_pretrain.ckpt"
param_vgg = load_checkpoint(ckpt_vgg16)
load_param_into_net(net, param_vgg)
模型训练
导入VGG-16预训练参数后,实例化损失函数、优化器,使用Model接口编译网络,训练FCN-8s网络。
import mindspore
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.train import (
CheckpointConfig,
LossMonitor,
Model,
ModelCheckpoint,
TimeMonitor,
)
device_target = "Ascend"
mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target=device_target)
train_batch_size = 4
num_classes = 21
# 初始化模型结构
net = FCN8s(n_class=21)
# 导入vgg16预训练参数
load_vgg16()
# 计算学习率
min_lr = 0.0005
base_lr = 0.05
train_epochs = 1
iters_per_epoch = dataset.get_dataset_size()
total_step = iters_per_epoch * train_epochs
lr_scheduler = mindspore.nn.cosine_decay_lr(
min_lr, base_lr, total_step, iters_per_epoch, decay_epoch=2
)
lr = Tensor(lr_scheduler[-1])
# 定义损失函数
loss = nn.CrossEntropyLoss(ignore_index=255)
# 定义优化器
optimizer = nn.Momentum(
params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.0001
)
# 定义loss_scale
scale_factor = 4
scale_window = 3000
loss_scale_manager = ms.amp.DynamicLossScaleManager(scale_factor, scale_window)
# 初始化模型
if device_target == "Ascend":
model = Model(
net,
loss_fn=loss,
optimizer=optimizer,
loss_scale_manager=loss_scale_manager,
metrics={
"pixel accuracy": PixelAccuracy(),
"mean pixel accuracy": PixelAccuracyClass(),
"mean IoU": MeanIntersectionOverUnion(),
"frequency weighted IoU": FrequencyWeightedIntersectionOverUnion(),
},
)
else:
model = Model(
net,
loss_fn=loss,
optimizer=optimizer,
metrics={
"pixel accuracy": PixelAccuracy(),
"mean pixel accuracy": PixelAccuracyClass(),
"mean IoU": MeanIntersectionOverUnion(),
"frequency weighted IoU": FrequencyWeightedIntersectionOverUnion(),
},
)
# 设置ckpt文件保存的参数
time_callback = TimeMonitor(data_size=iters_per_epoch)
loss_callback = LossMonitor()
callbacks = [time_callback, loss_callback]
save_steps = 330
keep_checkpoint_max = 5
config_ckpt = CheckpointConfig(
save_checkpoint_steps=10, keep_checkpoint_max=keep_checkpoint_max
)
ckpt_callback = ModelCheckpoint(prefix="FCN8s", directory="./ckpt", config=config_ckpt)
callbacks.append(ckpt_callback)
model.train(train_epochs, dataset, callbacks=callbacks)
鲲鹏昇腾开发者社区是面向全社会开放的“联接全球计算开发者,聚合华为+生态”的社区,内容涵盖鲲鹏、昇腾资源,帮助开发者快速获取所需的知识、经验、软件、工具、算力,支撑开发者易学、好用、成功,成为核心开发者。
更多推荐

所有评论(0)