环境配置

  1. 配置python3.9环境
#安装mindnlp 0.4.0套件
!pip install mindnlp==0.4.0
!pip uninstall soundfile -y
!pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/aarch64/mindspore-2.3.1-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

数据集加载与处理

  1. 数据集加载

本次实验使用的是nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。

from mindnlp.utils import http_get

# download dataset
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')
from mindspore.dataset import TextFileDataset

# load dataset
dataset = TextFileDataset(str(path), shuffle=False)
dataset.get_dataset_size()

本案例默认在GPU P100上运行,因中文文本,tokenizer使用的是bert tokenizer而非gpt tokenizer等原因,全量数据训练1个epoch的时间约为80分钟。

为节约时间,我们选取了数据集中很小的一个子集(500条数据)来演示gpt2的微调和推理全流程,但由于数据量不足,会导致模型效果较差。

# split into training and testing dataset
mini_dataset, _ = dataset.split([0.001, 0.999], randomize=False)
train_dataset, test_dataset = mini_dataset.split([0.9, 0.1], randomize=False)
  1. 数据预处理

原始数据格式:
article: [CLS] article_context [SEP]
summary: [CLS] summary_context [SEP]
预处理后的数据格式:
[CLS] article_context [SEP] summary_context [SEP]

import json
import numpy as np

# preprocess dataset
def process_dataset(dataset, tokenizer, batch_size=4, max_seq_len=1024, shuffle=False):
    def read_map(text):
        data = json.loads(text.tobytes())
        return np.array(data['article']), np.array(data['summarization'])

    def merge_and_pad(article, summary):
        # tokenization
        # pad to max_seq_length, only truncate the article
        tokenized = tokenizer(text=article, text_pair=summary,
                              padding='max_length', truncation='only_first', max_length=max_seq_len)
        return tokenized['input_ids'], tokenized['input_ids']
    
    dataset = dataset.map(read_map, 'text', ['article', 'summary'])
    # change column names to input_ids and labels for the following training
    dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])

    dataset = dataset.batch(batch_size)
    if shuffle:
        dataset = dataset.shuffle(batch_size)

    return dataset

因GPT2无中文的tokenizer,我们使用BertTokenizer替代。

from mindnlp.transformers import BertTokenizer

# We use BertTokenizer for tokenizing chinese context.
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
len(tokenizer)
train_dataset = process_dataset(train_dataset, tokenizer, batch_size=1)
next(train_dataset.create_tuple_iterator())

模型构建

  1. 构建GPT2ForSummarization模型,注意shift right的操作。
# 修改部分代码
# from mindspore import ops
# from mindnlp.transformers import GPT2LMHeadModel

# class GPT2ForSummarization(GPT2LMHeadModel):
#     def construct(
#         self,
#         input_ids = None,
#         attention_mask = None,
#         labels = None,
#     ):
#         outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)
#         shift_logits = outputs.logits[..., :-1, :]
#         shift_labels = labels[..., 1:]
#         # Flatten the tokens
#         loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)
#         return loss
from mindnlp.core.nn import functional as F
from mindnlp.transformers import GPT2LMHeadModel

class GPT2ForSummarization(GPT2LMHeadModel):
    def forward(
        self,
        input_ids = None,
        attention_mask = None,
        labels = None,
    ):
        outputs = super().forward(input_ids=input_ids, attention_mask=attention_mask)
        shift_logits = outputs.logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        # Flatten the tokens
        loss = F.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)
        return (loss,)
  1. 动态学习率
# 去除了动态学习率

# from mindspore import ops
# from mindspore.nn.learning_rate_schedule import LearningRateSchedule

# class LinearWithWarmUp(LearningRateSchedule):
#     """
#     Warmup-decay learning rate.
#     """
#     def __init__(self, learning_rate, num_warmup_steps, num_training_steps):
#         super().__init__()
#         self.learning_rate = learning_rate
#         self.num_warmup_steps = num_warmup_steps
#         self.num_training_steps = num_training_steps

#     def construct(self, global_step):
#         if global_step < self.num_warmup_steps:
#             return global_step / float(max(1, self.num_warmup_steps)) * self.learning_rate
#         return ops.maximum(
#             0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))
#         ) * self.learning_rate

模型训练

num_epochs = 1
warmup_steps = 100
learning_rate = 1.5e-4
max_grad_norm = 1.0
num_training_steps = num_epochs * train_dataset.get_dataset_size()
from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModel

config = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)
# 修改部分代码
# lr_scheduler = LinearWithWarmUp(learning_rate=learning_rate, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps)
# optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=lr_scheduler)
# optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=learning_rate)
# 记录模型参数数量
print('number of model parameters: {}'.format(model.num_parameters()))
# 修改部分代码
# from mindnlp._legacy.engine import Trainer
# from mindnlp._legacy.engine.callbacks import CheckpointCallback

# ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',
#                                 epochs=1, keep_checkpoint_max=2)

# trainer = Trainer(network=model, train_dataset=train_dataset,
#                   epochs=num_epochs, optimizer=optimizer, callbacks=ckpoint_cb)
# trainer.set_amp(level='O1')  # 开启混合精度
from mindnlp.engine import TrainingArguments

training_args = TrainingArguments(
    output_dir="gpt2_summarization",
    save_steps=train_dataset.get_dataset_size(),
    save_total_limit=3,
    logging_steps=1000,
    max_steps=num_training_steps,
    learning_rate=learning_rate,
    max_grad_norm=max_grad_norm,
    warmup_steps=warmup_steps
    
)

from mindnlp.engine import Trainer

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
)
# 修改部分代码
# trainer.run(tgt_columns="labels")
trainer.train()
def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):
    def read_map(text):
        data = json.loads(text.tobytes())
        return np.array(data['article']), np.array(data['summarization'])

    def pad(article):
        tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)
        return tokenized['input_ids']

    dataset = dataset.map(read_map, 'text', ['article', 'summary'])
    dataset = dataset.map(pad, 'article', ['input_ids'])
    
    dataset = dataset.batch(batch_size)

    return dataset
batched_test_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
print(next(batched_test_dataset.create_tuple_iterator(output_numpy=True)))
# 修改部分代码
# model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)
model = GPT2LMHeadModel.from_pretrained('./gpt2_summarization/checkpoint-45', config=config)

由于训练数据量少,epochs数少且tokenizer并未使用gpt tokenizer等因素,模型推理效果会较差。

model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in batched_test_dataset.create_tuple_iterator():
    output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)
    output_text = tokenizer.decode(output_ids[0].tolist())
    print(output_text)
    i += 1
    if i == 1:
        break

运行结果

在这里插入图片描述

Logo

鲲鹏昇腾开发者社区是面向全社会开放的“联接全球计算开发者,聚合华为+生态”的社区,内容涵盖鲲鹏、昇腾资源,帮助开发者快速获取所需的知识、经验、软件、工具、算力,支撑开发者易学、好用、成功,成为核心开发者。

更多推荐