openGauss资源使用:内存CPU监控

【免费下载链接】openGauss-server openGauss kernel ~ openGauss is an open source relational database management system 【免费下载链接】openGauss-server 项目地址: https://gitcode.com/opengauss/openGauss-server

概述

在企业级数据库运维中,资源监控是保障系统稳定运行的关键环节。openGauss作为一款高性能开源关系型数据库,提供了全面的内存和CPU监控机制。本文将深入探讨openGauss的资源监控体系,帮助DBA和开发人员更好地理解和优化数据库性能。

监控体系架构

openGauss的资源监控采用多层次的架构设计:

mermaid

核心监控视图

1. pg_stat_activity - 会话活动监控

pg_stat_activity视图提供当前所有数据库会话的详细信息,是监控CPU和内存使用的基础视图。

-- 查看当前活跃会话的CPU和内存使用情况
SELECT 
    datname as database,
    usename as username,
    application_name,
    client_addr,
    state,
    query,
    -- CPU相关统计
    backend_xid,
    backend_xmin,
    -- 内存相关统计
    query_id,
    -- 时间统计
    query_start,
    state_change
FROM pg_stat_activity 
WHERE state = 'active'
ORDER BY query_start;

2. pg_stat_statements - SQL语句统计

pg_stat_statements扩展提供详细的SQL执行统计信息,是性能分析的重要工具。

-- 安装pg_stat_statements扩展
CREATE EXTENSION pg_stat_statements;

-- 查看SQL语句的资源消耗统计
SELECT 
    userid::regrole as username,
    dbid::regclass as database,
    query,
    calls as execution_count,
    total_time as total_execution_time,
    rows as total_rows,
    -- 内存相关统计
    shared_blks_hit as buffer_cache_hits,
    shared_blks_read as disk_reads,
    shared_blks_dirtied as blocks_dirtied,
    shared_blks_written as blocks_written,
    -- 临时空间使用
    temp_blks_read as temp_block_reads,
    temp_blks_written as temp_block_writes,
    -- I/O时间统计
    blk_read_time as block_read_time,
    blk_write_time as block_write_time
FROM pg_stat_statements 
ORDER BY total_time DESC 
LIMIT 20;

3. 系统表内存统计

openGauss提供多个系统视图来监控内存使用情况:

-- 查看数据库内存使用概况
SELECT * FROM pg_stat_database;

-- 查看表级别的统计信息
SELECT 
    schemaname,
    relname,
    seq_scan,
    seq_tup_read,
    idx_scan,
    idx_tup_fetch,
    n_tup_ins,
    n_tup_upd,
    n_tup_del,
    n_live_tup,
    n_dead_tup
FROM pg_stat_user_tables;

内存监控详解

缓冲池监控

openGauss使用共享缓冲池来缓存数据页,监控缓冲池命中率对性能优化至关重要。

-- 计算缓冲池命中率
SELECT 
    sum(heap_blks_read) as heap_read,
    sum(heap_blks_hit) as heap_hit,
    CASE 
        WHEN sum(heap_blks_read) + sum(heap_blks_hit) > 0 
        THEN round(sum(heap_blks_hit) * 100.0 / (sum(heap_blks_read) + sum(heap_blks_hit)), 2)
        ELSE 0 
    END as hit_ratio
FROM pg_statio_user_tables;

内存使用趋势分析

-- 监控内存使用趋势(需要定期采集数据)
CREATE TABLE memory_usage_history (
    collection_time timestamp PRIMARY KEY,
    total_memory bigint,
    used_memory bigint,
    buffer_memory bigint,
    connection_memory bigint
);

-- 插入当前内存状态
INSERT INTO memory_usage_history 
SELECT 
    now(),
    (SELECT setting::bigint FROM pg_settings WHERE name = 'shared_buffers') as total_memory,
    (SELECT sum(pg_database_size(oid)) FROM pg_database) as used_memory,
    (SELECT setting::bigint FROM pg_settings WHERE name = 'shared_buffers') as buffer_memory,
    (SELECT count(*) * 1024 * 1024 FROM pg_stat_activity) as connection_memory;

CPU监控策略

会话级CPU监控

-- 识别CPU密集型会话
SELECT 
    pid,
    usename,
    datname,
    query,
    -- CPU使用估算(基于执行时间)
    now() - query_start as query_duration,
    -- 锁定信息
    wait_event_type,
    wait_event
FROM pg_stat_activity 
WHERE state = 'active'
ORDER BY query_start;

查询级别CPU分析

-- 分析CPU消耗最高的查询
SELECT 
    query,
    calls,
    total_time,
    mean_time,
    rows,
    -- CPU效率指标
    CASE 
        WHEN rows > 0 THEN total_time / rows 
        ELSE total_time 
    END as time_per_row
FROM pg_stat_statements 
ORDER BY total_time DESC 
LIMIT 10;

监控指标阈值设置

为确保系统稳定性,建议设置以下监控阈值:

监控指标 警告阈值 严重阈值 检查频率
缓冲池命中率 < 95% < 90% 5分钟
CPU使用率 > 70% > 85% 1分钟
内存使用率 > 80% > 90% 5分钟
活跃连接数 > 最大连接数80% > 最大连接数90% 1分钟
磁盘I/O等待 > 50ms > 100ms 1分钟

自动化监控脚本

内存监控脚本

-- 内存使用监控函数
CREATE OR REPLACE FUNCTION monitor_memory_usage()
RETURNS TABLE (
    metric_name text,
    metric_value bigint,
    metric_unit text,
    warning_threshold bigint,
    critical_threshold bigint
) AS $$
BEGIN
    RETURN QUERY
    SELECT 
        'shared_buffers'::text,
        (SELECT setting::bigint FROM pg_settings WHERE name = 'shared_buffers'),
        'bytes'::text,
        (SELECT setting::bigint FROM pg_settings WHERE name = 'shared_buffers') * 0.8,
        (SELECT setting::bigint FROM pg_settings WHERE name = 'shared_buffers') * 0.9
    UNION ALL
    SELECT 
        'total_database_size'::text,
        (SELECT sum(pg_database_size(oid)) FROM pg_database),
        'bytes'::text,
        (SELECT setting::bigint FROM pg_settings WHERE name = 'shared_buffers') * 2,
        (SELECT setting::bigint FROM pg_settings WHERE name = 'shared_buffers') * 3;
END;
$$ LANGUAGE plpgsql;

CPU负载监控

-- CPU负载监控查询
SELECT 
    'cpu_load' as metric,
    -- 估算CPU负载(基于活跃查询数量和执行时间)
    (SELECT count(*) FROM pg_stat_activity WHERE state = 'active') as active_queries,
    (SELECT sum(EXTRACT(EPOCH FROM (now() - query_start))) 
     FROM pg_stat_activity 
     WHERE state = 'active') as total_execution_seconds,
    -- 系统负载指标
    (SELECT setting FROM pg_settings WHERE name = 'max_connections') as max_connections;

性能优化建议

内存优化策略

  1. 缓冲池调优

    -- 根据系统内存调整shared_buffers
    ALTER SYSTEM SET shared_buffers = '8GB';
    
    -- 调整工作内存
    ALTER SYSTEM SET work_mem = '16MB';
    
  2. 连接池优化

    -- 限制最大连接数
    ALTER SYSTEM SET max_connections = 500;
    
    -- 启用连接池
    ALTER SYSTEM SET pooler_enabled = on;
    

CPU优化策略

  1. 查询优化

    -- 启用并行查询
    ALTER SYSTEM SET max_parallel_workers = 8;
    ALTER SYSTEM SET max_parallel_workers_per_gather = 4;
    
    -- 优化成本参数
    ALTER SYSTEM SET cpu_tuple_cost = 0.01;
    ALTER SYSTEM SET cpu_index_tuple_cost = 0.005;
    
  2. 索引优化

    -- 创建适当的索引
    CREATE INDEX idx_users_email ON users(email);
    CREATE INDEX idx_orders_user_id ON orders(user_id);
    

监控告警配置

基于Prometheus的监控

# prometheus.yml 配置
scrape_configs:
  - job_name: 'opengauss'
    static_configs:
      - targets: ['localhost:9187']
    metrics_path: /metrics
    params:
      format: ['prometheus']

# 告警规则
groups:
- name: openGaussAlerts
  rules:
  - alert: HighCPUUsage
    expr: rate(pg_stat_activity_count[5m]) > 10
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "High CPU usage detected"
      description: "CPU usage is above threshold for more than 5 minutes"
  
  - alert: LowBufferHitRatio
    expr: pg_stat_database_blks_hit / (pg_stat_database_blks_hit + pg_stat_database_blks_read) < 0.9
    for: 10m
    labels:
      severity: critical
    annotations:
      summary: "Low buffer hit ratio"
      description: "Buffer cache hit ratio is below 90%"

故障排查流程

当出现资源问题时,建议按照以下流程进行排查:

mermaid

总结

openGauss提供了完善的资源监控体系,通过系统视图、扩展功能和自定义监控脚本,可以全面掌握数据库的CPU和内存使用情况。有效的资源监控不仅能够及时发现性能问题,还能为容量规划和性能优化提供数据支持。

关键监控要点:

  • 定期检查缓冲池命中率和内存使用趋势
  • 监控CPU密集型查询和会话
  • 设置合理的告警阈值
  • 建立自动化监控体系
  • 根据监控数据进行持续优化

通过本文介绍的监控方法和最佳实践,您可以构建一个健壮的openGauss数据库监控系统,确保数据库服务的高可用性和高性能。

【免费下载链接】openGauss-server openGauss kernel ~ openGauss is an open source relational database management system 【免费下载链接】openGauss-server 项目地址: https://gitcode.com/opengauss/openGauss-server

Logo

鲲鹏昇腾开发者社区是面向全社会开放的“联接全球计算开发者,聚合华为+生态”的社区,内容涵盖鲲鹏、昇腾资源,帮助开发者快速获取所需的知识、经验、软件、工具、算力,支撑开发者易学、好用、成功,成为核心开发者。

更多推荐